

SM Transparency Catalog ▶ Polycor ▶ Marble Floor and Pavers

Marble Floor and **Pavers**

Originating at the Polycor quarries and through production, marbles are manufactured to tiles and pavers with a wide range of finishes. Marble is an inherently nonemitting source of VOCs and its durability allows it to perform impeccably in commercial & residential applications, interior or exterior.

Performance dashboard

Features & functionality

Covers the wide selection of Polycor's heritage marbles and any surface finishes available.

Covers interior flooring solutions to exterior paving products, from tiles to XL pavers.

Has an unmatched durability and minimal maintenance needs

Visit Polycor for more product information

Marbles

Commercial Flooring Floor & Pavers

Walkways and patios

Floor tile

Environment & materials

Polycor's commitment to carbon neutrality translates

Reduction of product's GWP

Reduction of product's energy intensity

Polycor's ownship of the chain of custody from quarries to plants ensures:

No child labor and forced labor

Materials remain 100% natural, free from chemicals or dyes

Certifications & rating systems:

Environmental Product Declaration (EPD)

Natural Stone Sustainability Standard (ANSI 373)

Health Product Declaration (HPD)

MasterFormat® 09 30 33, 09 63 40, 32 14 40 Marble Floor and Pavers Guide Specs

For spec help, contact us or call 418.692.4695

See LCA, interpretation & rating systems

SM Transparency Report (EPD)™

VERIFICATION

3rd-party reviewed

LCA

Transparency Report (EPD)

3rd-party verified

Validity: 2023/02/13 - 2028/02/13 Decl #: POL - 20230213 - 003

This environmental product declaration (EPD) was externally verified, according to ISO 21930:2017, SM Part A, and ISO 14025:2006, by Jack Geibig, President, Ecoform.

Ecoform, LLC 11903 Black Road. Knoxville, TN 37932

(865) 850-1883

SUMMARY

Reference PCR

Regions; system boundaries

North America; Cradle to grave

Functional unit / reference service life: 1 m² of floor covering; 75 years

LCIA methodology: TRACI 2.1 LCA software; LCI database

SimaPro Developer 9.4

Ecolnvent 3.8, US-El 2.2

LCA conducted by: Sustainable Minds

Polycor Inc.

76 rue Saint-Paul, Suite 100 Quebec City (Quebec), Canada G1K 3V9 418-692-4695

Contact us

Marble Floor and Pavers

LCA results & interpretation

Life cycle assessment

Scope and summary

Product description

○ Cradle to gate ○ Cradle to gate with options **♡** Cradle to grave

Marble stone flooring can be applied as interior flooring, exterior flooring, landscaping, and terracing. It tends to be durable and easy to maintain, with

an elegant outlook. Marble makes up 100% of the total mass of the flooring and is used in commercial, residential, and public sector buildings. The results in this study are presented for flooring with a thickness of 0.5 inches. However, this study applies to both interior flooring and exterior

paving with a range of thicknesses and can be scaled using the scaling factors on Page 4. **Functional unit** The functional unit is **one square meter** of floor covering. The amount of

marble needed to meet the functional unit is 34.27 kg.

Manufacturing data The data for all marble stone products were collected from Polycor's marble

quarries and processing facilities covering a period of two years: January

2020 to December 2021. Data for marble quarry operations were collected

impacts.

MATERIAL

Marble

5.00E-01

0.00E+00

from two quarry sites across North America and grouped as North American marble quarries. After marble is extracted from the quarry, it goes to a processing facility. Stone processor operations data were collected from one Polycor marble processing site in North America.

Data were collected from quarries and producers mainly operating in North

America (mainly the US). As such, the geographical coverage for this study is based on North American conditions.

• American Limestone Plants: one manufacturing facility in Georgia.

Default installation, packaging, and disposal scenarios Flooring is delivered at the job site ready for installation, where minor cuts

installation of the product include mortar, grout, and acrylate. These

may be necessary to accommodate design. Ancillary materials used in the

materials are structural enhancement components used as bonding agents or fillers for joints. Wood and cardboard used as packaging to safely deliver the stone to the site is then transported to be either landfilled or recycled,

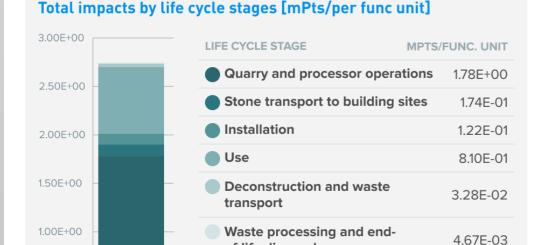
end of its useful life, the flooring is removed and transported to be landfilled. Other life cycle stages Use of sealants for periodic resealing of marble flooring and use of mortar during installation also generate significant impacts to the overall life **cycle impacts.** Under normal operating conditions, marble flooring requires not only monthly cleaning but also resealing every five years. Due to the nature of natural stone, it is anticipated that the marble flooring products will last for the lifetime of the building. The reference service life (RSL) thus

meets an ESL of 75 years, and flooring will need no replacements during its

service life. End-of-life stages have lower contributions on the total life cycle

AVG % WT.

STONE TRANSPORT TO BUILDING SITES


A4 Transport to

building sites

100%

following US EPA's end of life scenarios for containers and packaging. At the

Material composition greater than 1% by weight

of-life disposal

Stages B1, B3-B7, C1, and C3 though included, have no associated activities.

LCA results

LIFE CYCLE STAGE

Excluded* (MND)

*Module D is excluded.

Impacts of 1 square meter of floor

TRACI v2.1 results per functional unit

Materials or processes contributing

>20% to total impacts in each life

cycle stage

LIFE CYCLE STAGE

Eutrophication

Global warming

Smog

PCRs

services"

Impact category

Fossil fuel depletion

(Embodied Carbon)

Ecological damage

covering

Information modules: Included (X)

A3 Processor operations

A1-A3

PRODUCTION (QUARRY AND

OPERATIONS)

A1 Quarry

operations

processors

A2 Transport to

SM Single Score Learn about SM Single Score results 1.78E+00 mPts Energy consumed during stone quarrying and processing (electricity and fuels).

1.91E-02

3.27E+01

1.95E+00

4.80E+01

PRODUCTION (QUARRY AND STONE TRANSPORT TO PROCESSOR **BUILDING SITES OPERATIONS)**

1.29E-02

1.74E-03

4.13E+00

3.40E-01

8.42E+00

2.25E+00

See the additional content required by the SM Part B for interior and exterior stone flooring on page 4 of the Transparency Report PDF.

1.74E-01 mPts

transportation

product to

building site.

used to transport

Truck

1.20E-02 7.13E-04 2.61E+00 134F₋07

1.74E-01

2.56E+00

Rating systems

performance.

1.22E-01 mPts

Use of ancillary

mortar) for

installation.

materials (mainly

INSTALLATION

7.28E+00 4 80F-06

8.74E-01

2.00E+01

LEED BD+C: New Construction | v4 - LEED v4 Building product disclosure and optimization

Building product disclosure and optimization

Environmental product declarations

Environmental product declarations

Industry-wide (generic) EPD

✓ Product-specific Type III EPD

Industry-wide (generic) EPD

✓ Product-specific Type III EPD

BREEAM New Construction 2018

The intent is to reward project teams for selecting products from

manufacturers who have verified improved life-cycle environmental

6.58E-02

2.82E-02

155F-07

6.41E-02

1.59+00

2.44E-03

3.28E-04

7.79E-01

148F-08

2.53E-02

1.84E-01

½product

1 product

1 product

1.5 product

.5 point

.75 point

1 point

8.39E-04

8.20E-05

8.68E-02

References

ISO 21930:2017 serves as the core PCR along with EN 15804 and SM Part A. SM Part A: Life Cycle Assessment Calculation Rules and Report

April, 2022. Part B review conducted by the Sustainable Minds TAB, tab@sustainableminds.com

SM Part B: Product group definition for Interior and exterior stone flooring,

Download PDF SM Transparency Report, which includes the additional EPD content required by the SM Part B.

enable purchasers and users to compare the potential environmental performance of products on a life cycle basis. They are designed to present information transparently to make the limitations of comparability more understandable. A limitation to this study is that not all manufacturers in North America participated. TRs/EPDs of products that conform to the same PCR and include the same life cycle stages, but are made by different manufacturers, may not assertions unless the conditions defined in ISO 14025 Section 6.7.2. 'Requirements for

SM Transparency Reports (TR) are ISO 14025 Type III environmental declarations (EPD) that

deviations are possible. Example of variations: Different LCA software and background LCI data sets may lead to different results upstream or downstream of the life cycle stages declared. SM Transparency Report (EPD)™ **VERIFICATION** LCA This environmental product **SUMMARY** declaration (EPD) was externally 3rd-party reviewed verified, according to ISO

All life cycle stages For marble flooring, the cradle-to-gate stage (A1-A3) dominates the

What's causing the greatest impacts

depletion. This study assessed a multitude of inventory and environmental indicators. In addition to the six major impact categories (global warming included in Type III environmental declarations. Other categories are being developed and defined, and LCA should continue making advances in their for comparative purposes. LCIA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety stages.

to-gate stage (A1-A3) dominates the impacts due to the energy consumed at the quarries and processing plants. The processor operations (A3) stage is the highest contributor to most of the impact categories, followed by the

The primary finding, across the environmental indicators, was that cradle-

transportation of stone from quarries to processing plants, transportation of flooring from processing plants to the installation sites, and use of mortar during installation also generate significant impacts in the overall life cycle impacts of marble flooring. Quarry operations and transport to processors Impacts generated at marble quarries (A1) are mainly due to the use of grid electricity and fuels in the quarries. Other material inputs generate little impact in comparison to the electricity and fuel consumed. The transportation of marble from quarries to processing plants generates considerable impacts in numerous impact categories.

responsible for the majority of impacts, while other fuels and material

Processor operations and transport to building sites

Manufacturing operations at marble processing plants make up the greatest share of impacts. Electricity consumed at processors is

inputs have little contribution. The transportation of marble flooring

Sensitivity analysis Based on the recommendation provided by Polycor, impacts for processor operations specific to a square meter of marble flooring was assumed to match the average stone processing for a square meter of marble. A sensitivity analysis was performed to check the robustness of the results

when the energy consumed during processing is varied by +/-20% from the

estimate used in this study. The resulting variation in the total life cycle

manufactured in processor plants to the building sites also has a significant

sensitive to thickness value. Natural stone is one of the lowest embodied carbon construction materials. Although we are proud of this intrinsic quality, we want to make sure that we'll never stop improving it. Our main driver is our ambitious 2025 carbon neutrality pledge. By increasing the use of renewable energy, reducing our dependency on fossil fuels, electrifying our car fleet and increasing the energy efficiency throughout our value chain, we aim to reduce our embodied carbon by 40% by the end of 2025!

verifies numerous areas of natural stone production, effectively improving the baseline for the environmental and social performance of natural stone in alignment with green building practices. See how we make it greener

B2 Maintenance

INSTALLATION

B1-B7

B3 Repair

B5

B4 Replacement

Refurbishment

B6 Operational energy use

B6 Operational water use

results for all impact categories except eutrophication and ozone

potential, ozone depletion, acidification, smog, eutrophication, and fossil fuel depletion), additional impact categories have also been included. These six impact categories are globally deemed mature enough to be development. However, the EPD users shall not use additional measures margins or risks. Overall results are consistent with expectations for stone flooring's life cycles, with most of the impacts being generated during cradle-to-gate

maintenance stage (B2) and quarry operations (A1). The cradle-to gatestage (A1-A3) contributes to ~60% of the total impacts in all impact categories except for eutrophication and ozone depletion. The

impact on the overall life cycle impacts of marble flooring.

impacts is about 12%, implying that the system is not sensitive to this assumed value. Another parameter that affects the overall life cycle impacts is the thickness of marble flooring. The thickness of stone flooring studied varied up to 2 inches. Results have been presented for a typical interior thickness of 0.5 inches, but as the functional mass of varies with the thickness, the impacts also vary. A sensitivity analysis has thus been conducted for various thicknesses of marble flooring used for different flooring

applications. For the thickness of 1.25 inches and larger, the variation in

overall life cycle impacts is greater than 20%, implying that the system is

Beyond embodied carbon, Polycor only uses rainwater for stone extraction, recycles it, and also uses dry sawing technology in a growing number of quarry operations. In quarrying, production, installation and maintenance, natural stone lowers water use throughout its life cycle. Polycor is the leader within the Natural Stone Sustainability Standard (ANSI 373) with 25% of our sites certified. This standard examines and

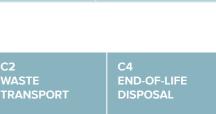
DECONSTRUCTION AND WASTE PROCESSING AND END-OF-LIFE **TRANSPORT DISPOSAL B1** Use **A5** Installation **C1** C3 Waste **Processing Deconstruction** C4 End of life C2 Waste

transport

8.10E-01 mPts

Sealants used for

MAINTENANCE


periodic

resealing

3.28E-02 mPts

Waste transport

4.67E-03 mPts

Landfilling after

the end of life.

C3-C4

disposal

Unit Impact category 1.11E-01 Acidification kg SO, eq

kg N eq

kg CO, eq

kg O₃ eq

Unit

MJ, LHV

Additional environmental information

Ozone depletion	kg CFC-11 eq	?	2.45E-06	8.24E-07	1.34E-07	4.80E-06	1.55E-07	1.48E-08
Human health dan	nage							
Impact category	Unit							
Carcinogenics	CTU _h	?	1.98E-07	1.72E-09	1.70E-08	9.90E-08	3.24E-10	2.54E-11
Non-carcinogenics	CTU _h	?	1.89E-06	1.55E-07	1.99E-07	1.06E-06	2.93E-08	1.01E-09
Respiratory effects	kg PM _{2.5} eq	?	4.09E-02	8.13E-04	1.08E-03	1.96E-02	1.53E-04	1.09E-04

LCA Background Report Polycor Natural Stone Flooring LCA Background Report (public version), Polycor 2023. SimaPro Analyst 9.4, ecoinvent 3.4 database.

Requirements, v2018 March, 2018. Document created by Joep Meijer, Naji Kasem, and Kim Lewis and is managed and maintained by the Sustainable Minds Technical Advisory Board (TAB) as outlined in ISO 14025:2006.

ISO 14025, "Sustainability in buildings and civil engineering works -- Core

rules for environmental product declarations of construction products and

sufficiently align to support direct comparisons. They therefore, cannot be used as comparative Comparability' are satisfied. Comparison of the environmental performance of building envelope thermal insulation using EPD information shall be based on the product's use and impacts at the building level, and therefore EPDs may not be used for comparability purposes when not considering the building energy use phase as instructed under the PCR. Full conformance with the PCR for stone flooring allows EPD comparability only when all stages of a life cycle have been considered, when they comply with all referenced standards, use the same sub-category PCR, and use equivalent scenarios with respect to construction works. However, variations and

21930:2017, SM Part A, and ISO Transparency Report (EPD) 14025:2006, by Jack Geibig, President, Ecoform. **Ecoform, LLC**

11903 Black Road,

Reference PCR

Regions; system boundaries

North America; Cradle to grave Functional unit / reference service life: 1 m² of floor covering; 75 years

LCIA methodology: TRACI 2.1 LCA software; LCI database SimaPro Developer 9.4

LCA conducted by: Sustainable Minds

✓ Product-specific EPD

LEED BD+C: New Construction | v4.1 - LEED v4.1

Environmental Product Declarations (EPD) Industry-average EPD Multi-product specific EPD

Mat 02 - Environmental impacts from construction products

Polycor Inc. 76 rue Saint-Paul, Suite 100

Quebec City (Quebec), Canada G1K 3V9

418-692-4695

3rd-party verified

Validity: 2023/02/13 - 2028/02/13 Decl #: POL - 20230213 - 003

Knoxville, TN 37932

(865) 850-1883

© 2022 | The SM Transparency Report [EPD]™ Program is operated by Sustainable Minds® (www.sustainableminds.com) | Privacy policy

EcoInvent 3.8, US-EI 2.2

Contact us

How we make it greener

Marble Floor and Pavers See LCA results by life cycle stage

Collapse all

RAW MATERIALS ACQUISITION

SM Transparency Catalog ▶ Polycor ▶ Marble Floor and Pavers

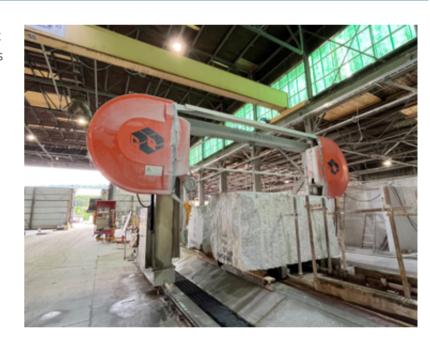
Natural stone quarrying process has high yields and little excess material because the stone is close to surface. It's different from metal mining, where large amounts of earth must be removed to extract very little quantities. Also, underground quarrying, which has been perfected for generations at our Eureka Quarry, reduces land use and is a practice that Polycor wishes to extend to several quarries.

In addition, few consumables are needed to extract natural stone. Contrast that with other building materials, Polycor specifically focuses on sourcing the highest grades of natural stone so that, for instance, a black granite stone, doesn't need dyes to achieve its rich color.

From the bedrock to the point of sale, Polycor maintains an unbroken ownership of the supply chain allowing it to maintain standards of quality and practice.

TRANSPORTATION

Using stone from local sources is the single biggest opportunity to reduce its embodied carbon. Since natural stone is a heavy material, the environmental impacts for transporting it end up being one of its most significant source of carbon. Natural stone is sourced world-wide and each deposit has unique aesthetic and performance characteristics so this is not always avoidable. Be sure to understand the distances between the quarry, the processing facility, sometimes the distribution centers but also the transportation mode. In most of Polycor's operations, the quarry is within miles of the processing facility.



MANUFACTURING

Manufacturing natural stone is so simple that you can sumarize it by a single action, cutting. Cutting large piece into smaller pieces ending in a finished product. Also, the beauty of natural stone products is that there is no chemical mixed within our products. Therefore, they are inherently a non-emitting source of VOCs.

Recycling water is reused several times into the manufacturing process and is compulsory to achieve ANSI 373 Standard.

There are a large variety of sizes and finishes that are commonly used for natural stone. Design teams can help reducing energy consumption in the following ways: Usage of low embodied carbon finishes such as water jet, 3D analysis to loose as few stone as possible troughout it's transformation, accepting the natural variation in the material so there is more usable material.

OTHER (USE, END OF LIFE)

Whether you think of the Egyptian pyramids, the Colosseum of Rome, the cathedrals of the European capitals or closer to us; the famous Empire State building; natural stone is the most durable, classic and timeless building material on Earth. With 100+ years of durability, natural stone lasts longer than other building construction material and projects that use natural stone require less maintenance.

Since we don't use any chemicals, natural stone products as well as excess process materials throughout the extraction and transformation phases can be reused or recycled into gravel for roads, landscaping products and even furniture and jewelry. In short, natural stone can be reused and recycled multiple times during its life cycle; the only limit is your imagination!

Nevertheless, even if natural stone ends up in a construction landfill, there will be no toxic chemicals seeping into the earth as the material degrades. It simply returns to the earth, cradle to cradle.

SM Transparency Report (EPD)™

VERIFICATION LCA 3rd-party reviewed

Transparency Report (EPD)

3rd-party verified

Validity: 2023/02/13 - 2028/02/13 Decl #: POL - 20230213 - 003

This environmental product declaration (EPD) was externally verified, according to ISO 21930:2017, SM Part A, and ISO 14025:2006, by Jack Geibig, President, Ecoform.

Ecoform, LLC 11903 Black Road, Knoxville, TN 37932 (865) 850-1883

SUMMARY

Reference PCR

Regions; system boundaries North America; Cradle to grave

Functional unit / reference service life: 1 m² of floor covering; 75 years

LCIA methodology: TRACI 2.1

LCA software; LCI database SimaPro Developer 9.4 Ecolnvent 3.8, US-El 2.2

LCA conducted by: Sustainable Minds

Polycor Inc.

76 rue Saint-Paul, Suite 100 Quebec City (Quebec), Canada G1K 3V9 418-692-4695

Contact us

Data

Background This product specific declaration was created by collecting product data for one square meter of marble floor covering. Material and production inputs from each quarry and processor site were used to calculate weighted averages of those inputs based on the production share of the site.

Allocation The allocation methods used were examined according to the updated allocation rules in ISO 21930:2017. Quarry inputs and outputs were divided evenly among the quarried marble by mass, and no co-product allocation was needed. Similarly, no co-product allocation was required for processor operations as well since processing data was collected from Polycor's processing plants specific to marble. The processor inputs and outputs were divided evenly among the processed stone by area.

Cut-off criteria for the inclusion of mass and energy flows are 1% of renewable primary resource (energy) usage, 1% nonrenewable primary resource (energy) usage, 1% of the total mass input of that unit process, and 1% of environmental impacts. The total of neglected input flows per module does not exceed 5% of energy usage, mass, and environmental impacts. No known flows are deliberately excluded from this declaration. Biogenic carbon is included in reported results.

Quality Primary data was collected for a time period of two years, which represents typical operations of Polycor's marble quarry and processors across North America. Inventory data is considered to have a good precision and provide a representative depiction of the industry average. Data is also considered to be complete as no know flows are deliberately excluded from this analysis other than those defined to be outside of the system boundary. Proxy and generic datasets have been used for some materials and processes, but are considered to be sufficiently representative.

Polycor Georgia Marble Quarry, Tate, GA

C880

C99

C170

C518

C518

12.70

34.27

2699

6.89

6.89

51.71

2.07

0.49

0.1-1.0

Saint Clair Quarry, Marble City, OK

Quarry and Manufacturing Plant information

North American Marble

Thickness to achieve

functional unit

Product weight

Flexural strength

Modulus of rupture

Compressive strength

Thermal conductivity

Thermal resistance

Density

Quarries

Data Group	Data Group Manufacturing Plant location(s)						
North American Marble Plant	Georgia Marble Plant, Tate, GA						
Relevant technical properties							
Parameter	Unit	Took Mothood	V 1				
- arameter	Offic	Test Method	Value				
CSI Masterformat classification	09 30 33; 09 63		Value				
CSI Masterformat			value				

mm

kg

kg/m³

Мра

MPa

MPa

W/m.k

m.K/W

Liquid water absorption % of dry wt

Major system boundary exclusions

- Capital goods and infrastructure,
- Maintenance and operation of support equipment;
- Manufacture and transport of packaging materials not associated with final product; • Human labor and employee transport;

5/16"

0.625

1/2"

1.0

- Building operational energy and water use not associated with final product.
- **Production flow chart**

Stone Quarrying — Use of

explosives, power drills, power saws, diamond belts etc. — stone blocks extracted from natural rock layers. Stone transport

Stone Processing — Stone blocks go through block saws,

Scaling factors

Conversion factor

Thickness

from quarries to processing facilities

stone blocks processed to stone flooring and paving products.

saw slabs, bridge saws etc.-

Scenarios and additional technical information

Transport from Quarry to Processor (A2)

Based on the primary data, the transport distance between Polycor's marble quarry and processing facilities varies, & the weighted distance is 157 km.

Transport to the building site (A4)

Parameter	Value	Unit
Vehicle type	Lorry, 16-32 to	on
Fuel type	Diesel	
Liters of fuel	0.41	l/100 km
Distance from manufacturer to installation site	800	km (per PCR)
Capacity utilization (mass based)	100	%
Gross density of products transported	2,699	kg/m ³
Capacity utilization volume factor	1	

Packaging scenario assumptions Based on EPA's 2018 data, it has been assumed that 37% of all packaging will

be landfilled, with the rest recycled.

Installation into the building (A5) It is assumed that flooring fabrication (cutting and finishing to required size) is done at

Installation scrap assumed

the processing plants and is typically delivered to the job site ready for installation. For the minor changes necessary to accommodate changes, we have considered the use of manual equipment like hackshaws, tile cutters, handle, chisels, tile nippers etc.

Ancillary materials -	Mortar	4.07	La
	Grout Acrylate	0.21 0.04	kg
Net freshwater consumption		0.0004	m^3
Electricity consumption		0	kWh
Product loss per functional unit (scrap)		1.71	kg
Waste materials at the construction site be processing (stone scrap and packaging was		2.73	kg
Output materials from on-site waste proces	ssing	0	kg
Mass of packaging waste by type	Cardboard Wood	0 3.11	kg
Biogenic carbon contained in packaging		5.70	kg CO ₂
Direct emissions to ambient air, soil and wa	ater	0	kg
VOC emissions		0	μg/m³
Transport distance for both stone scrap an waste (Diesel-powered truck/trailer)	d packaging	161	km
Biogenic carbon contained in packaging Direct emissions to ambient air, soil and wa VOC emissions Transport distance for both stone scrap an	Wood	3.11 5.70 0	kg CO ₂ kg μg/m ³

Maintenance process information	Cleaning and resealing the surface of marble flooring					
Maintenance cycle	Monthly cleaning (900 cycles per RSL & ESL) Sealing every 5 years (14 cycles per RSL & ESL	_)				
Net freshwater consumption - municipal water supply	0.09 (for entire lifetime) m ³					
Ancillary materials - Social Seala	, ,					
Energy input during maintenance	Not necessary					

Reference service life information

Maintenance scenario parameters

Reference Service Life (RSL)	/5	years
Design application parameters	Outdoor and indoor application	ations
Outdoor environment	Installation as recommended I	by manufacturer.
Indoor environment	Installation as recommended by	y manufacturer.
Use conditions	All conditions	

The product is dismantled and removed from the building

Assumptions for

End of life (C1-C4)

scenario development	manually. It is transported to a local no further processing before final d	•	ere it requires					
Collection process	Collected separately	0	kg					
	Collected with mixed construction waste	38.34	kg					
Recovery	Reuse	0	kg					
	Recycling (0%)	0	kg					
	Landfill (100%)	38.34	kg					
Waste transport		161	km					
Final disposal		38.34	kg					
Removals of biogenic car	bon (excluding packaging)	0	kg CO ₂					
Hazardous waste								

hazardous according to the Resource Conservation and Recovery Act (RCRA), Subtitle C.

Calcination CO₂ emissions Although calcination and carbonation is not relevant to marble flooring products, calcination occurs during installation stage due to the use of mortar. Mortar includes cement calcination CO₂ emissions which is calculated & reported separately using a

Polycor's marble flooring does not contain substances that are identified as

carbon intensity factor of 886 CO₂ per ton of cement (Source: U.S. Cement Industry Carbon Intensities (2019)).

1 1/2"

3.0

The results presented below have been reported for a flooring thickness of 0.5 inches. However, they may be scaled according to different thicknesses as desired using scaling factors. To calculate the results for additional thickness options, simply multiply the results by the corresponding conversion factor presented here:

4"

8.0

5"

10.0

2"

4.0

LCIA results, resource use, output & waste flows, and carbon emissions & removals per m² of marble flooring Parameter A1-A3 A4 A5 B1 B2 B3-B7 C1 C2 C3 C4 **Total** LCIA results (per m² of marble flooring)

3/4"

1.5

Ozone depletion	kg CFC-11 eq	2.45E-06	8.24E-07	1.34E-07	0	4.80E-06	0	0	1.55E-07	0	1.48E-08	8.38E-06
Global warming	kg CO2 eq	3.27E+01	4.13E+00	2.61E+00	0	7.28E+00	0	0	7.79E-01	0	8.68E-02	4.76E+01
Smog	kg O3 eq	1.95E+00	3.40E-01	1.74E-01	0	8.74E-01	0	0	6.41E-02	0	2.53E-02	3.43E+00
Acidification	kg SO2 eq	1.11E-01	1.29E-02	1.20E-02	0	6.58E-02	0	0	2.44E-03	0	8.39E-04	2.05E-01
Eutrophication	kg N eq	1.91E-02	1.74E-03	7.13E-04	0	2.82E-02	0	0	3.28E-04	0	8.20E-05	5.02E-02
Carcinogenics	CTUh	1.98E-07	1.72E-09	1.70E-08	0	9.90E-08	0	0	3.24E-10	0	2.54E-11	3.16E-07
Non-carcinogenics	CTUh	1.89E-06	8.24E-07	1.99E-07	0	1.06E-06	0	0	2.93E-08	0	1.01E-09	3.34E-06
Respiratory effects	kg PM2.5 eq	4.09E-02	4.13E+00	1.08E-03	0	1.96E-02	0	0	1.53E-04	0	1.09E-04	6.27E-02
Ecotoxicity	CTUe	55.95%	7.3%	2%	0%	33.4%	0%	0%	1.4%	0%	0%	100%
Fossil fuel depletion	MJ surplus	4.80E+01	8.42E+00	2.56E+00	0	2.00E+01	0	0	1.59E+00	0	1.84E-01	8.08E+01
Resource use indicators	s (per m² of	marble fl	ooring)									
Renewable primary energy used as energy carrier (fuel)	MJ, LHV	1.23E+02	8.62E-02	1.48E+00	0	2.07E+02	0	0	1.62E-02	0	2.51E-03	2.20E+02
Renewable primary resources with energy content used as material	MJ, LHV	4.19E+01	0	0	0	0	0	0	0	0	0	4.19E+01
Total use of renewable primary resources with energy content	MJ, LHV	5.42E+01	8.62E-02	1.48E+00	0	2.07E+02	0	0	1.62E-02	0	2.51E-03	2.62E+02
Non-renewable primary resources used as an energy carrier (fuel)	MJ, LHV	6.41E+02	5.54E+01	2.42E+01	0	1.94E+02	0	0	1.04E+01	0	1.22E+00	8.78E+02
Non-renewable primary resources with energy content used as material	MJ, LHV	1.86E+01	0	0	0	0	0	0	0	0	0	1.86E+01
Total use of non-renewable primary resources with energy content	MJ, LHV	6.60E+02	5.54E+01	2.42E+01	0	1.94E+02	0	0	1.04E+01	0	1.22E+00	8.96E+02

0

0

0

Output flows and waste category indicators (per m² of marble flooring)

1.96E+01

kg

MJ, LHV

MJ. LHV

MJ, LHV

kg CO₂

kg CO₂

0

0

m3

Secondary materials

Recovered energy

Use of net fresh water

production processes

Carbon emissions from combustion of waste from

production processes

Calcination carbon emissions

non-renewable sources used in

fuels

resources

Renewable secondary fuels

Non-renewable secondary

0

0

0

0

2.10E+00

0

0

9.39E-03

0

0

0

1.34E+01

0

0

0

0

0

0

0

0

0

1.77E-03

0

0

0

0

0

0

0

0

0

0

2.14E-04

0

0

0

3.51E+01

1.01E+00

0

Hazardous waste disposed	kg	8.48E-03	0	0	0	0	0	0	0	0	0	8.48E-03
Non-hazardous waste disposed	kg	9.85E+00	0	3.39E+00	0	0	0	0	0	0	3.53E+01	4.86E+01
High-level radioactive waste, conditioned, to final repository	kg	4.29E-02	4.51E-06	2.96E-04	0	2.11E-03	0	0	8.50E-07	0	1.31E-07	4.53E-02
Intermediate- and low-level radioactive waste, conditioned, to final repository	kg	2.04E-04	4.73E-08	5.56E-07	0	1.26E-06	0	0	8.91E-09	0	1.38E-09	2.06E-04
Components for re-use	kg	0	0	0	0	0	0	0	0	0	0	0
Materials for recycling	kg	5.39E+02	0	3.13E+00	0	0	0	0	0	0	0	5.42E+02
Materials for energy recovery	kg	0	0	0	0	0	0	0	0	0	0	0
Exported energy	MJ, LHV	0	0	0	0	0	0	0	0	0	0	0
Carbon emissions and re	emovals (p	er m² of n	narble floo	oring)								
Biogenic carbon removal from packaging	kg CO ₂	5.70E+00	0	2.85E-01	0	0	0	0	0	0	0	5.99E+00
Biogenic carbon emission from packaging	kg CO ₂	0	0	4.33E+00	0	0	0	0	0	0	0	4.33E+00
Biogenic carbon emission from combustion of waste from renewable sources used in	kg CO ₂	0	0	0	0	0	0	0	0	0	0	0

1.01E+00

0

0

0

0

0