

SM Transparency Catalog ► Polycor ► Marble Countertops

Marble Countertops

The slab of marble supplied to fabricators and dealers is a semi-processed product that can be installed in a kitchen of any other space. Polycor's top-quality countertops offer an large choice of colors & finishes. Marble being the most durable surface material, it makes sense aethetically and financially to bring this natural and healthy material on top of everything.

Performance dashboard

Features & functionality

Covers the wide selection of Polycor's heritage marbles and any surface finishes available.

Has an unmatched durability and minimal maintenance needs.

Includes ultra-thin countertops 1CM

Visit Polycor for more product information

Marbles Countertops Ultra-thin 1CM slabs

Environment & materials

Polycor's commitment to carbon neutrality translates into:

Reduction of product's GWP

Reduction of product's energy intensity

Polycor's ownship of the chain of custody from quarries to plants ensures:

No child labor and forced labor

Materials remain 100% natural, free from chemicals or dyes

Certifications & rating systems:

Environmental Product Declaration (EPD) Natural Stone Sustainability Standard (ANSI 373) Health Product Declaration (HPD)

MasterFormat[®] 12 36 40 Marble Countertops Guide Specs For spec help, contact us or call 418.692.4695

See LCA, interpretation & rating systems

SM Transparency Report (EPD)™

LCA

Ø

Ø

VERIFICATION

3rd-party reviewed

Transparency Report (EPD)

3rd-party verified

Validity: 2023/02/13 – 2028/02/12 Decl #: POL– 20230213 – 005 This environmental product declaration (EPD) was externally verified, according to the NSF PCR and ISO 14025:2006, by Jack Geibig, President, Ecoform.

Ecoform, LLC 11903 Black Road, Knoxville, TN 37932 www.ecoform.com

(865) 850-1883

SUMMARY Reference PCR NSF PCR For Residential Countertops

Regions; system boundaries North America; Cradle to grave

Functional unit / reference service life: 1 m² of natural stone countertops; 10 years

LCIA methodology: TRACI 2.1

LCA software; LCI database SimaPro Developer 9.4 Ecolnvent 3.8, US-El 2.2

LCA conducted by: Sustainable Minds

Public LCA:

Life Cycle Assessment of Granite and Marble Stone Countertops by Polycor Polycor Inc. 76 rue Saint-Paul, Suite 100 Quebec City (Quebec), Canada G1K 3V9 418-692-4695 https://www.polycor.com/

Contact us

© 2022 | The SM Transparency Report [EPD][™] Program is operated by Sustainable Minds® (www.sustainableminds.com) | Privacy policy

LCA results & interpretation

Marble Countertops

Life cycle assessment

Scope and summary

 \bigcirc Cradle to gate \bigcirc Cradle to gate with options \heartsuit Cradle to grave

Product description

Countertops refer to raised, flat, and horizontal surfaces, built for work mainly in kitchens, bathrooms, and workrooms. This surface is mostly supported by cabinets and is positioned at a suitable height for the user to perform the intended tasks. Countertops processed and fabricated by Polycor are made of natural stone, and the stone type included in this report is marble.

The results in this study are presented for countertops with a thickness of 29.36mm. However, this study applies to countertops with a range of thicknesses and can be scaled using the scaling factors on Page 4.

Functional unit

The functional unit is **one square meter** of countertops for a service life of 10 years in residential use, including a front edge and a backsplash. The amount of marble needed to meet the functional unit is **82.75 kg**.

Manufacturing data

The data for all marble stone products were collected from Polycor's marble quarries and processing facilities covering a period of two years: January 2020 to December 2021. Data for marble quarry operations were collected from two quarry sites across North America and grouped as North American marble quarries.

After marble is extracted from the quarry, it goes to a processing facility. Stone processor operations data were collected from one Polycor marble processing site in North America. NSI resources and other literature data were used to develop estimates or assumptions for other upstream or downstream activities where necessary.

Default installation, packaging, and disposal scenarios

Countertops are delivered at the job site ready for installation, where minor cuts may be necessary to accommodate design. Drills and grinders are typically used for install. Ancillary materials used in the installation of the product include adhesives, resins, acrylics, sealers, and silicones. Wood and cardboard used as packaging to safely deliver the stone to the site is then transported to be either landfilled or recycled, following US EPA's end of life scenarios for containers and packaging. At the end of its useful life, the countertop is removed and transported to be either landfilled (31.5%) or recycled (68.5%).

What's causing the greatest impacts

All life cycle stages

For the marble flooring product, the cradle-to-gate stage (A1-A3) dominates the results for all the impact categories. This study assessed a multitude of inventory and environmental indicators. In addition to the six major impact categories (global warming potential, ozone depletion, acidification, smog, eutrophication, and fossil fuel depletion), additional impact categories have also been included. These six impact categories are globally deemed mature enough to be included in Type III environmental declarations. Other categories are being developed and defined, and LCA should continue making advances in their development. However, the EPD users shall not use additional measures for comparative purposes. LCIA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risks.

For granite countertops, the cradle-to-gate stages (A1-A3) dominates the results for all the impact categories. The construction stage (A3) dominates the results, followed by the quarry operation (A1) stage, the next highest impact contributor to five out of ten categories. The cradle-to-gate stage (A1-A3) contributes to over 60% of the total impacts in all impact categories. Installation of countertops (A5) and maintenance (B2) also make considerable impacts, but the end-of-life (C) stage has insignificant contribution to the overall impacts.

The overall results are consistent with expectations for stone countertop products' life cycles, as these products are not associated with energy consumption during their use stage.

Quarry operations and transport to processors

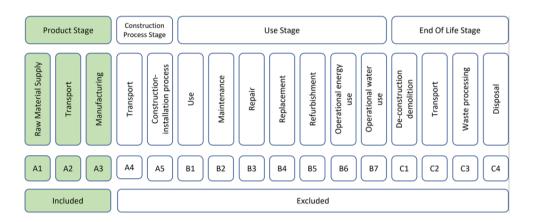
Impacts generated at marble quarries (A1) are mainly due to the use of grid electricity and fuels in the quarries. Other material inputs generate little impact in comparison to the electricity and fuel consumed. The transportation of marble from quarries to processing plants generates considerable impacts in numerous impact categories.

Construction and transport to building sites

For marble countertops, construction (A3) stage is the highest contributor to most of the impact categories. Energy consumed at the construction sites, including both processors and fabricators, is responsible for the majority of impacts, while other material inputs have little contribution. Transporting countertops from fabricators includes not only the shipment of countertops to the building sites, but also the initial visit for site measurements, which also makes significant contributions to overall impacts.

Other life cycle stages

Installation impacts are driven by the use of fuels and electricity during installation (A5), and it results in significant impacts.


For maintenance (B2), marble countertops require monthly cleaning and resealing every five years under normal operating conditions. These maintenance activities also have significant impacts on the total life cycle impacts.

Due to the nature of natural stone, it is anticipated that marble countertops will last for a service life of 10 years. End-of-life stages have lower contributions on the total life cycle impacts.

Total impacts by life cycle stages [mPts/per func unit]

6.00E+00	LIFE CYCLE STAGE	IPTS/FUNC. UNIT
4.00E+00 -	Material acquisition and pre- processing	1.73E+00
	Construction	2.60E+00
4.00E+00 -	Installation	8.15E-01
3.00E+00 -	Use and maintenance	2.39E-01
3.002.00	End of life	1.88E-02
2.00E+00 -	_	
1.00E+00 —		

Sensitivity analysis

Based on the recommendation provided by Polycor, impacts for processor operations specific to a m² of marble countertops was calculated to be 10% more than the average stone processing for m² of other marble products as they go through heavy polishing than other stone products and consume 10% more energy. A sensitivity analysis was performed to check the robustness of the results when the energy consumed is +-20% of the estimate used in this study. The resulting variation in the potential CO_2 equivalent emissions and fossil fuel depletion impacts was ~11%. But the variation in total life cycle impacts of marble countertops is just ~6% for the two impacts.

Natural stone is one of the lowest embodied carbon construction materials. Although we are proud of this intrinsic quality, we want to make sure that we'll never stop improving it. Our main driver is our ambitious 2025 carbon neutrality pledge. By increasing the use of renewable energy, reducing our dependency on fossil fuels, electrifying our car fleet and increasing the energy efficiency throughout our value chain, we aim to reduce our embodied carbon by 40% by the end of 2025!

Beyond embodied carbon, Polycor only uses rainwater for stone extraction, recycles it, and also uses dry sawing technology in a growing number of quarry operations. In quarrying, production, installation and maintenance, natural stone lowers water use throughout its life cycle.

Polycor is the leader within the Natural Stone Sustainability Standard (ANSI 373) with 25% of our sites certified. This standard examines and verifies numerous areas of natural stone production, effectively improving the baseline for the environmental and social performance of natural stone in alignment with green building practices.

See how we make it greener

LCA	results

0.00E+00

LIFE CYCLE STAGE	MATERIAL ACQUISITION AND PRE-PROCESSING	CONSTRUCTION	INSTALLATION	USE AND MAINTENANCE	END-OF-LIFE
Information modules: Included Stages B1, B3-B7, C1, C3, and D have no associated activities and are not applicable for this study.	A1 Quarry operations	A3 Construction	A4 Transport to building sites	B2 Maintenance	C2 Waste transport
	A2 Transport to processors		A5 Installation		C4 Disposal

SM Single Score Learn about SM Single Score results

Impacts of 1 square meter of natural stone countertop	1.73E+00 mPts	2.60E+00 mPts	8.15E-01 mPts	2.39E-01 mPts	1.88E-02 mPts
Materials or processes contributing >20% to total impacts in each life cycle stage	Energy consumed during stone quarrying (electricity and fuels).	Energy consumed during stone processing and fabrication (electricity and fuels).	Use of ancillary materials (adhesives) for installation and transport of product to building site.	Material consumed for maintenance.	Waste transport to end-of-life centers.

TRACI v2.1 results per functional unit

LIFE CYCLE STAGE			MATERIAL ACQUISITION AND PRE-PROCESSING	CONSTRUCTION	INSTALLATION	USE AND MAINTENANCE	END-OF-LIFE
Ecological damag	ge						
Impact category	Unit						
Acidification	kg SO₂ eq	0	1.56E-01	1.15E-01	6.74E-02	2.14E-02	1.76E-03
Eutrophication	kg N eq	?	1.70E-02	2.86E-02	5.82E-03	1.48E-02	2.14E-04
Global warming (Embodied carbon)	kg CO ₂ eq	0	2.32E+01	4.29E+01	9.80E+00	5.68E-01	4.28E-01
Ozone depletion	kg CFC-11 eq	?	1.50E-06	2.97E-06	1.18E-06	4.85E-07	8.32E-08
Human health da	unit						
Carcinogenics	CTU _h	?	2.21E-07	3.90E-07	1.29E-07	2.52E-08	1.70E-10
Non-carcinogenics	CTU _h	?	1.92E-06	2.65E-06	8.38E-07	2.67E-07	1.43E-08
Respiratory effects	kg PM _{2.5} eq	?	2.21E-02	5.66E-02	2.88E-03	8.03E-03	1.52E-04
Smog	kg O ₃ eq	?	4.40E+00	1.46E+00	1.95E+00	2.85E-01	4.84E-02
Additional environmental information							
Impact category	Unit						
Fossil fuel depletion	MJ, LHV	?	3.80E+01	6.62E+01	2.09E+01	4.99E+00	8.74E-01
Ecotoxicity	CTU	?	3.09E+01	1.75E+01	1.43E+01	3.89E+00	2.03E-01

See the additional content required by the NSF PCR for residential countertops on page 4 of the Transparency Report PDF.

References

LCA Background Report

Polycor Natural Stone Flooring LCA Background Report (public version), Polycor 2022. SimaPro Analyst 9.4, ecoinvent 3.4 database.

Rating systems

The intent is to reward project teams for selecting products from manufacturers who have verified improved life-cycle environmental performance.

LEED BD+C: New Construction | v4 - LEED v4

NSF PCR for residential countertops

PCR review conducted by Evan Griffing, Ph.D.; Thomas P. Gloria, Ph.D.; and Jack Geibig.

ISO 14025, "Sustainability in buildings and civil engineering works -- Core rules for environmental product declarations of construction products and services", ISO 21930:2017

۴

Download PDF SM Transparency Report, which includes the additional EPD content required by the NSF PCR.

SM Transparency Reports (TR) are ISO 14025 Type III environmental declarations (EPD) that enable purchasers and users to compare the potential environmental performance of products on a life cycle basis. This EPD was not written to support comparative assertions. Even for similar products, differences in functional unit, use and end-of-life stage assumptions, and data quality may produce incomparable results. It is not recommended to compare EPDs with another organization as there may be differences in methodology, assumptions, allocation methods, data quality such as variability in datasets, and results of variability in assessment software tools used. A limitation to this study is that not all manufacturers in North America participated. TRs/EPDs of products that conform to the same PCR and include the same life cycle stages, but are made by different manufacturers, may not sufficiently align to support direct comparisons. They therefore, cannot be used as comparative assertions unless the conditions defined in ISO 14025 Section 6.7.2. 'Requirements for Comparability' are satisfied. Building product disclosure and optimization

Environmental product declarations

O Industry-wide (generic) EPD	1/2product
Product-specific Type III EPD	1 product
LEED BD+C: New Construction v4.1 - LEED v4.1 Building product disclosure and optimization Environmental product declarations	

Industry-wide (generic) EPD
 1 product

Product-specific Type III EPD

BREEAM New Construction 2018

Mat 02 - Environmental impacts from construction products

Environmental Product Declarations (EPD)

O Industry-average EPD	.5 point
Multi-product specific EPD	.75 points
V Product-specific EPD	1 point

SM Transparency Report (EPD)™

LCA

Ø

Ø

VERIFICATION

3rd-party reviewed

Transparency Report (EPD)

3rd-party verified

Validity: 2023/02/13 – 2028/02/12 Decl #: POL- 20230213 – 005 This environmental product declaration (EPD) was externally verified, according to the NSF PCR and ISO 14025:2006, by Jack Geibig, President, Ecoform.

Ecoform, LLC 11903 Black Road, Knoxville, TN 37932 www.ecoform.com

(865) 850-1883

SUMMARY

Reference PCR NSF PCR For Residential Countertops

Regions; system boundaries North America; Cradle to grave

Functional unit / reference service life: 1 m² of natural stone countertops; 10 years

LCIA methodology: TRACI 2.1

LCA software; LCI database SimaPro Developer 9.4 Ecolnvent 3.8, US-El 2.2

LCA conducted by: Sustainable Minds

Public LCA: Life Cycle Assessment of Granite and Marble Stone Countertops by Polycor Polycor Inc.

76 rue Saint-Paul, Suite 100 Quebec City (Quebec), Canada G1K 3V9 418-692-4695 https://www.polycor.com/

1.5 product

SM Transparency Catalog
Polycor
Marble Countertops

How we make it greener

Collapse all

RAW MATERIALS ACQUISITION

Natural stone quarrying process has high yields and little excess material because the stone is close to surface. It's different from metal mining, where large amounts of earth must be removed to extract very little quantities. Also, underground quarrying, which has been perfected for generations at our Eureka Quarry, reduces land use and is a practice that Polycor wishes to extend to several quarries.

In addition, few consumables are needed to extract natural stone. Contrast that with other building materials, Polycor specifically focuses on sourcing the highest grades of natural stone so that, for instance, a black granite stone, doesn't need dyes to achieve its rich color.

From the bedrock to the point of sale, Polycor maintains an unbroken ownership of the supply chain allowing it to maintain standards of quality and practice.

TRANSPORTATION

Using stone from local sources is the single biggest opportunity to reduce its embodied carbon. Since natural stone is a heavy material, the environmental impacts for transporting it end up being one of its most significant source of carbon. Natural stone is sourced world-wide and each deposit has unique aesthetic and performance characteristics so this is not always avoidable. Be sure to understand the distances between the quarry, the processing facility, sometimes the distribution centers but also the transportation mode. In most of Polycor's operations, the quarry is within miles of the processing facility.

MANUFACTURING

Manufacturing natural stone is so simple that you can sumarize it by a single action, cutting. Cutting large piece into smaller pieces ending in a finished product. Also, the beauty of natural stone products is that there is no chemical mixed within our products. Therefore, they are inherently a non-emitting source of VOCs.

Marble Countertops

See LCA results by life cycle stage

Recycling water is reused several times into the manufacturing process and is compulsory to achieve ANSI 373 Standard.

There are a large variety of sizes and finishes that are commonly used for natural stone. Design teams can help reducing energy consumption in the following ways: Usage of low embodied carbon finishes such as water jet, 3D analysis to loose as few stone as possible troughout it's transformation, accepting the natural variation in the material so there is more usable material.

OTHER (USE, END OF LIFE)

Whether you think of the Egyptian pyramids, the Colosseum of Rome, the cathedrals of the European capitals or closer to us; the famous Empire State building; natural stone is the most durable, classic and timeless building material on Earth. With 100+ years of durability, natural stone lasts longer than other building construction material and projects that use natural stone require less maintenance.

Since we don't use any chemicals, natural stone products as well as excess process materials throughout the extraction and transformation phases can be reused or recycled into gravel for roads, landscaping products and even furniture and jewelry. In short, natural stone can be reused and recycled multiple times during its life cycle; the only limit is your imagination!

Nevertheless, even if natural stone ends up in a construction landfill, there will be no toxic chemicals seeping into the earth as the material degrades. It simply returns to the earth, cradle to cradle.

SM Transparency Report (EPD)™

VERIFICATION	LCA
3rd-party reviewed	<
Transparency Rep	oort (EPD)
3rd-party verified	<

Validity: 2023/02/13 – 2028/02/12 Decl #: POL- 20230213 – 005 This environmental product declaration (EPD) was externally verified, according to the NSF PCR and ISO 14025:2006, by Jack Geibig, President, Ecoform.

Ecoform, LLC 11903 Black Road, Knoxville, TN 37932 www.ecoform.com

(865) 850-1883

SUMMARY

Reference PCR NSE PCR For Residential Counterton

Regions; system boundaries North America; Cradle to grave

Functional unit / reference service life: 1 m² of natural stone countertops; 10 years

LCIA methodology: TRACI 2.1

LCA software; LCI database SimaPro Developer 9.4 Ecolnvent 3.8, US-EI 2.2

LCA conducted by: Sustainable Minds

Public LCA: Life Cycle Assessment of Granite and Marble Stone Countertops by Polycor Polycor Inc. 76 rue Saint-Paul, Suite 100 Quebec City (Quebec), Canada G1K 3V9 418-692-4695 https://www.polycor.com/

Contact us

© 2022 | The SM Transparency Report [EPD]" Program is operated by Sustainable Minds° (www.sustainableminds.com) | Privacy policy

Additional EPD content required by: NSF PCR For Residential Countertops

Sustainable Minds®

ransparency Report

Data

Background This product-specific declaration was created by collecting product data for one square meter of natural stone countertops. Material and production inputs from each of Polycor's quarry and processor sites were used to calculate weighted averages of those inputs based on the production share of the site. industry average data for countertop fabrication was also used.

Allocation The allocation methods used were examined according to the updated allocation rules in ISO 21930:2017. Quarry inputs and outputs were divided evenly among the quarried marble by mass, and no co-product allocation was needed. Similarly, no co-product allocation was required for processor operations as well since processing data was collected from Polycor's processing plants specific to marble. The processor inputs and outputs were divided evenly among the processed stone by area.

Cut-off criteria for the inclusion of mass and energy flows are 1% of renewable primary resource (energy) usage, 1% nonrenewable primary resource (energy) usage, 1% of the total mass input of that unit process, and 1% of environmental impacts. The total of neglected input flows per module does not exceed 5% of energy usage, mass, and environmental impacts. No known flows are deliberately excluded from this declaration. Biogenic carbon is included in reported results.

Quality Primary data was collected for a time period of two years, which represents typical operations of Polycor's marble quarry and processors across North America. Inventory data is considered to have a good precision and provide a representative depiction of the industry average. Data is also considered to be complete as no know flows are deliberately excluded from this analysis other than those defined to be outside of the system boundary. Proxy and generic datasets have been used for some materials and processes, but are considered to be sufficiently representative.

Relevant technical properties

Parameter	Unit	Test Method	Value
CSI Masterformat classification	12 36 40		
Stone type	Marble		
Stone grades	All grades		
Thickness to achieve functional unit	mm		29.36
Product weight	kg		82.75
Density	kg/m ³		2,699
Flexural strength	Мра	C880	6.89
Modulus of rupture	MPa	C99	6.89
Compressive strength	MPa	C170	51.71
Thermal conductivity	W/m.k	C518	2.07
Thermal resistance	m.K/W	C518	0.49
Liquid water absorption	% of dry wt	C97	0.1-1.0%

Major system boundary exclusions

- Capital goods and infrastructure,
- Maintenance and operation of support equipment;
- Manufacture and transport of packaging materials not associated with final product;
- Human labor and employee transport;
- _

Scenarios and additional technical information

Transport from Quarry to Processor (A2)

1 2 3 4 ADDITIONAL EPD CONTENT

Based on the primary data, the transport distance between Polycor's marble quarry and processing facilities varies, & the weighted distance is 157 km. For the quarries who had no primary information, a conservative stone transportation distance of 100 km via truck & trailer was assumed.

Transport to the building site (A4)

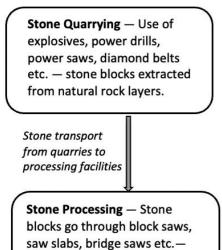
Parameter	Value	Unit
Vehicle type	Passenger ca Lorry, 16-32 to	
Fuel type	Petrol (for init Diesel (for co	ial visit) untertop transport)
Liters of fuel	0.41	l/100 km
Distance from manufacturer to installation site Initial visit Delivery of the countertop		km (weighted avg)
Capacity utilization (mass based)	100	%
Gross density of products transported	2,699	kg/m ³
Capacity utilization volume factor	1	

Installation into the building (A5)

It is assumed that countertop fabrication (cutting and finishing to required size) is done at the processing plants and is typically delivered to the job site ready for installation. The scrap generated is insignificant and will be recycled if generated, so an installation scrap rate of 0% is assumed.

Installation scrap assumed	0	%
Ancillary materials - Adhesive Resin Acrylate Sealer Silicone	0.017 0.089 0.0005 0.009 0.078	kg
Net freshwater consumption	0	m ³
Power of Drills and grinders	1.38	kW
Operation time for Drills and grinders	15	min.
Packaging waste transport distance	32	km
Direct emissions to ambient air, soil and water	0	kg
VOC emissions	0	μg/m ³

Maintenance scenario parameters (B1-B7)


Maintenance process information	Cleaning the surface of marble countertops	
Maintenance cycle	Weekly cleaning (520 cycles per RSL) Resealing every 5 years (2 cycles per RSL)	
Net freshwater consumption - municipal water supply	52 (for entire lifetime)	Liter
Ancillary materials - Soap Silicone sealant	2.6 (for entire lifetime) 0.165 (for each cycle)	kg
Energy input during maintenance	Not necessary	

Reference service life information

Reference Service Life (RSL)	10	years
Design application parameters	Indoor applications	

• Building operational energy and water use not associated with final product.

Production flow chart

stone blocks processed to stone

flooring and paving products.

Indoor environment	Installation as recommended by manufacturer.				
Use conditions	All conditions				

End of life (C1-C4)

Assumptions for scenario development	The product is dismantled and remo manually. It is transported to a local no further processing before final d	facility where it requires				
Disposal scenarios	Recycling	68.5	%			
	Landfill					
Waste transport	32	km				
Removals of biogenic carbon (excluding packaging) 0 kg CO ₂						

Hazardous waste

Polycor's marble countertops do not contain substances that are identified as hazardous according to the Resource Conservation and Recovery Act (RCRA), Subtitle C.

Scaling factors

The results presented below have been reported to 1.156 inches (29.36 mm) for marble countertops. However, they may be scaled according to different thicknesses as desired using scaling factors. To calculate the results for additional thickness options, simply multiply the results by the corresponding conversion factor presented here:

Thickness	1.156"	7/8"	1"	1 ^{1/8} "	
	(29.36 mm)	(22.24 mm)	(25.41 mm)	(28.58 mm)	
Conversion Factor	1	0.757	0.865	0.973	

LCIA results, resource use, output & waste flows, and carbon emissions & removals per m² of marble countertops

Parameter	Unit	Material acquisition and pre-processing stage	Countertop Construction	Installation stage	Use and maintenance stage	End of life		Total
	-	A1-A2	A3	A4-A5	B2	C2	C4	
LCIA results (per m ² of marble Ozone depletion	kg CFC-11 eq) 1.50E-06	2.97E-06	1.18E-06	4.85E-07	7.23E-08	1.09E-08	6.22E-06
Global warming	kg CO2 eq	2.32E+01	4.29E+01	9.80E+00	5.68E-01	3.64E-01	6.42E-02	7.69E+01
Smog	kg O3 eq	4.40E+00	1.46E+00	1.95E+00	2.85E-01	2.98E-02	1.86E-02	8.14E+00
Acidification	kg SO2 eq	1.56E-01	1.15E-01	6.74E-02	2.14E-02	1.14E-03	6.19E-04	3.61E-01
Eutrophication	kg N eq	1.70E-02	2.86E-02	5.82E-03	1.48E-02	1.53E-04	6.05E-05	6.65E-02
Carcinogenics	CTUh	2.21E-07	3.90E-07	1.29E-07	2.52E-08	1.51E-10	1.88E-11	7.65E-07
Non-carcinogenics	CTUh	1.92E-06	2.65E-06	8.38E-07	2.67E-07	1.36E-08	7.42E-10	5.69E-06
Respiratory effects	kg PM2.5 eq	2.21E-02	5.66E-02	2.88E-03	8.03E-03	7.13E-05	8.02E-05	8.98E-02
Ecotoxicity	CTUe	3.09E+01	1.75E+01	1.43E+01	3.89E+00	1.97E-01	6.09E-03	6.68E+01
-		3.80E+01	6.62E+01	2.09E+01	4.99E+00	7.38E-01	1.36E-01	1.31E+02
Fossil fuel depletion Energy consumption, energy t	MJ surplus					7.36E-01	1.30E-01	1.3 IE+U2
Renewable fuels	MJ, LHV	1.87E+01	3.00E+01	8.59E+00	1.14E+02	7.56E-03	1.85E-03	1.71E+02
Virgin renewable resources	MJ, LHV	0	4.38E+01	4.81E-01	0	0	0	4.43E+01
Fossil fuels	MJ, LHV	2.92E+02	5.94E+02	3.20E+02	3.80E+01	4.83E+00	8.91E-01	1.25E+03
Nuclear fuels	MJ, LHV	5.37E+01	2.28E+02	5.48E+00	4.94E+00	3.03E-02	7.41E-03	2.92E+02
Miscellaneous fuels	MJ, LHV	4.92E-04	1.67E-02	1.60E-03	1.10E+01	1.18E-06	2.21E-07	1.10E+01
Virgin non-renewable resources	MJ, LHV	3.46E+02	8.03E+02	3.24E+02	5.39E+01	4.86E+00	8.98E-01	1.53E+03
Recycled resources	kg	0	0	0	0	0	0	0
Renewable secondary fuels	MJ, LHV	0	0	0	0	0	0	0
Non-renewable secondary fuels	MJ, LHV	0	0	0	0	0	0	0
Recovered energy	MJ, LHV	0	0	0	0	0	0	0
Use of net freshwater resources	m ³	5.38E+01	9.64E+00	2.26E+00	1.06E+00	8.24E-04	1.58E-04	6.68E+01
Primary energy demand	MJ	3.65E+02	8.96E+02	3.36E+02	1.68E+02	4.87E+00	9.00E-01	1.77E+03
Primary energy demand (fossil, nuclear)	MJ	3.46E+02	8.22E+02	3.27E+02	4.29E+01	4.86E+00	8.98E-01	1.54E+03
Renewable (solar, wind, hydro, biomass)	MJ	1.87E+01	7.38E+01	9.08E+00	1.14E+02	7.56E-03	1.85E-03	2.16E+02
Emissions to air (per m ² of ma	rble countert	ops)						
Sulphur oxides (SO _x)	kg	3.04E-02	4.46E-02	1.15E-02	6.82E-03	2.88E-04	9.19E-05	9.36E-02
Nitrogen oxides (NO _x)	kg	1.77E-01	5.31E-02	7.75E-02	9.90E-03	1.20E-03	7.51E-04	3.19E-01
Carbon dioxide (CO ₂)	Kg	2.21E+01	2.92E+01	9.24E+00	6.30E+00	3.48E-01	6.24E-05	6.72E+01
Methane (CH ₄)	kg	4.51E-02	1.74E+01	1.82E-02	1.53E-02	3.55E-04	3.85E-05	1.75E+01
Nitrous oxide (N ₂ O)	kg	1.09E-03	6.97E-02	3.37E-04	1.58E-03	1.44E-05	2.11E-06	7.27E-02
Carbon monoxide (CO)	kg	2.04E-01	1.16E-02	4.01E-02	6.40E-02	6.52E-05	1.93E-04	3.20E-01
Water usage and emissions to	water (per ı	m ² of marble	countertops)				
Phosphates, nitrates, dioxin, and heavy metals	kg	8.36E-03	2.02E-02	7.85E-04	3.59E-02	1.37E-06	3.15E-07	6.53E-02
Consumption (total water input)	m ³	1.06E+02	1.67E+01	5.52E+00	1.93E+00	9.28E-04	1.82E-04	1.30E+02
Output flows and waste categ	ory indicator	••						
Hazardous waste disposed	kg	3.06E-02	1.94E-03	0	0	0	0	3.25E-02
Non-hazardous waste disposed	kg	1.77E+00	3.27E+01	3.20E+00	0	0	2.61E+01	6.37E+01
High-level radioactive waste, conditioned, to final repository	kg	1.92E+00	5.42E-02	7.49E-06	1.98E-04	5.17E-07	9.69E-08	1.97E+00
Intermediate- and low-level radioactive waste, conditioned, to final repository	kg	1.87E-03	1.54E-08	1.31E-10	6.34E-08	5.90E-07	4.15E-09	1.87E-03
Components for re-use	kg	0	0	0	0	0	0	0
Landfill avoidance / materials for recycling	kg	4.59E+04	1.07E+02	6.41E+00	0	0	5.67E+01	4.61E+04
Incineration with energy recovery	kg	0	0	0	0	0	0	0
Incineration without energy recovery	kg	0	0	0	0	0	0	0

Carbon emissions and removals (per m² of marble countertops)

Biogenic Carbon Removal from Product	kg CO ₂	0	0	0	0	0	0	0
Biogenic Carbon Emission from Product	kg CO ₂	0	0	0	0	0	0	0
Biogenic Carbon Removal from Packaging	kg CO ₂	0	7.63E-02	3.81E-03	0	0	0	8.01E-02
Biogenic Carbon Emission from Packaging	kg CO ₂	0	0	1.12E-02	0	0	0	1.12E-02
Biogenic Carbon Emission from Combustion of Waste from Renewable Sources Used in Production Processes	kg CO ₂	0	0	0	0	0	0	0
Carbon Emissions from Combustion of Waste from Non-Renewable Sources used in Production Processes	kg CO ₂	0	0	0	0	0	0	0

© 2023 | The SM Transparency Report[™] Program is operated by Sustainable Minds[®] | Member, Program Operator Consortium | All rights reserved Privacy policy